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ABSTRACT 

We derive a precise decay estimate of the solutions to the initiM-boundary 

value problem for the wave equation with a dissipation: 

utt - Au  + a(x)ut : 0 in ~ x [0, oo) 

with the boundary condition u[of~ : 0, where a(x) is a nonnegative 

function on ~ satisfying 

a(x) > 0 a . e .  x E ~ a n d  - - d x < c c  for  s o m e 0 < p <  1 a(~)P 

for  a n  o p e n  se t  w C ~ i n c l u d i n g  a p a r t  o f  cq~ w i t h  a spec i f i c  p r o p e r t y .  T h e  

result is applied to prove a global existence and decay of smooth solutions 

for a semilinear wave equation with such a weak dissipation. 

1. I n t r o d u c t i o n  

In  th i s  p a p e r  we are  c o n c e r n e d  w i t h  t he  decay  p r o p e r t y  of  t he  so lu t ions  to  t he  

i n i t i a l - b o u n d a r y  va lue  p r o b l e m  for t h e  wave  e q u a t i o n  w i t h  a d i s s ipa t ion :  

(1.1) utt - A u  + a ( x ) u t  --- 0 in f l  x [0, oo) 

(1.2) u ( x , O )  = Uo(X), u t ( x ,O) ,  = Ul(X) and  ulan = O, 

w h e r e  ~ is a b o u n d e d  d o m a i n  in R g w i t h  a s m o o t h  b o u n d a r y  a f t  and  a(x )  is a 

s m o o t h  n o n n e g a t i v e  f u n c t i o n  on  l~ wh ich  m a y  van i sh  s o m e w h e r e  in gt. 
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When a(x) > e0 > 0 on ft it is easy to show that  the solutions of (1.1)-(1.2) 

decay exponentially to 0 as t --* oo, that  is, we can prove for an energy finite 

solution u(t) 

(1.3) E ( t )  - ~{11 u,(t)II 2 + II W(t)II 2) ___ CE(O)e -xt 

with some A > 0 (for a preciser or more general result see Rauch and Taylor [15], 

Nakao [9] etc.). 

On the other hand, if a(xo) > 0 for some x0 E f t  it is known that  

(1.4) lim E ( t )  = 0 
t---~OO 

(cf. N. Iwasaki [5], C. eafe rmos  [2] and A. Haraux [3]). 

Recently in [11] we gave an intermediate result of (1.3) and (1.4) as follows: 

Assume that  

(1.5) a(x) > 0 a.e. x E f t  and dx < oo 

for some 0 < p < 1. Then, it holds that  

(1.6) E(t) <_ C(ll u0 I I - . + ,  + II u l  I IH. ) (1  + t) -2p 'vN 

where m > N/2 and (Uo,Ul) E Hm+l • Hm should satisfy the compatibili ty 

condition of the ruth order. 

Roughly speaking, the condition on a(x) in the above admits that  a(x) vanishes 

on any N - 1 dimensional submanifolds in ft. The estimate (1.6) means that  the 

decay rate depends on the degeneracy of a(x) as well as the regurality of the 

solution itself. The method obtaining (1.6) is used in [12, 13] to prove the global 

existence and decay of the smooth solutions for some semilinear and quasilinear 

equations with such a degenerate dissipation. For a related result to (1.6) see 

also D. Russell [16]. 

Another approach was employed by Bardos, Lebeau and Rauch in [1]. There, 

it is proved by a micro-local analysis technique that  when Oft and a(x) are of 

class C ~ ,  (1.3) holds if and only if the following condition is satisfied: 

There exists T > 0 such that  every ray of geometric optics intersects the set 

{x c ~la(x) > 0} • (0, T). A typical case which assures this condition is that  

a(x) _> e0 > 0 in a neighbourhood of Oft. Note that  the above condition in [1] 

and (1.5) are independent of each other. 
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Quite recently, E. Zuazua [17] gave a simple sufficient condition on a(x) for 

(1.3) to hold. That  is, we set for Xo �9 R N, 

(1.7) r (x0)  = {x �9 0 ~ l ( x -  x0 ) -v (x )  > O} 

where v (x )  denotes the outward unit normal of the boundary 0 ~  at x �9 0 ~  

(cf. Lions [7]), and we assume that  there exists x0 �9 R N and a neighbourhood 

w of F(x0) in ~ such that  

(1.8) a(x)_>eo>O onw.  

Then, the estimate (1.3) holds for every energy finite solution u(t). 
This result due to Zuazua can be applicable to some type of semilinear 

equations without smallness condition on the initial data. 

The object of this paper is to combine the methods in [11] and [17] to prove 

the following more general result: If a(x) > 0 a.e. x �9 a;, which is the same as 

above, and 

(1.9) ~ a-~x)vdx < cx3 

for some 0 < p < 1, then the estimate (1.6) holds. 

We further show that  this result is useful to prove the global existence and 

decay of smooth solutions for some semilinear equations. Some semilinear and 

also quasilinear equations with a degenerate dissipation are treated in [12] and 

[13] by an energy method, but our situation is a little more delicate and we must 

employ another method for the global existence. 

2. Pre l iminar ie s  and  results  

We use only standard function spaces and omit their definition. But, we note 

that  ll" II denotes the L 2 norm on ~. 

If a(x) is smooth and u(t) is a smooth solution of the Problem (1.1)-(1.2), 

~t~ u(t), k = 0, 1 , . . . , m ,  must be 0 on the boundary 0~.  From the equation 

(1.1) we have, for k > 2, 

Ok 0k-~ 0k-1 
(2.1) a t  k u ( t )  = A o-Tg-~_2 u(t ) - a(z) O-~-g~u(t ) 

and then we define uk �9 Hm+l -k ,  by induction, as follows: 

(2.2) uk = A U k - 2  - -  a u k - l ,  k = 2, 3 . . . . .  

where uo, ul are those given as initial data. 
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Definition 1: We say that (U0, Ul)  �9 Hm+l x H.~ satisfies the compatibility 

condition of the ruth order associated with (1.1)-(1.2) if 

uk �9 Hm+l-k N H~ for k = 0, 1 , . . . ,  m, and u,,,+l �9 L 2. 

The following existence theorem is standard (cfi M. Ikawa [4], T. Kato [6], 

Pazy [14] etc.). 

PROPOSITION 1: Let m > 0 be an integer. Suppose that a(.) belongs to Cm-i(~)  

(a E L ~ i fm  = O) and (uo,u 0 E Hm+l x Hm (H0 = L 2) satisfies the compat- 

ibility condition of ruth order associated with (1.1)-(1.2). Then, there exists a 

unique solution u(t) of the problem (1.1)-(1.2) such that 

(2.3) u e Xm =- 5 Ck([O'~176176176176 
k=0 

Moreover, we have 

m + l  
2 (2.4) II D u(t)II =< C(II + II Ul 

k=O 

where D k denotes any partial differentiations with respect to t and x of order k 

and C denotes a general positive constant. 

Our result on the linear equation reads as follows. 

THEOREM 1: Suppose that a(x) > 0 on g~ and there exists xo �9 R N and a 

neighbourhood w of F(Xo) (see (1.7)) such that 

(2.5) a(x) > 0 a.e. x �9 w and ~ a(x)-Pdx < oo 

/'or some 0 < p < 1. Fhrther, suppose that a(.) belongs to Cm-l(-~) and (uo,ul) 

satisfies the compatibility condition of mth order with m such that 

(2.6) m > N/2. 

Then, the solution u(t) of (1)-(2) in Proposition 1 meets the decay property 

(2.7) E(t) < {E(O) -N/2''p + C(lluollHm+, + Iluxli~)-N/"~P(t - T)+} -2mv/N 
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for 0 < t < cx~ with some T > 0 independent of (uo, ul),  where we use the 

notation a + = max{a, 0}. 

Next, we consider the semilinear equation of the form 

(2.s) 

(2.9) 

u,, - ~ .  + a ( x ) . ,  + / ( . )  = o, 

u(x,O) =Uo(X),  ut(x,O) = u l (x)  and u[on = O. 

The compatibility condition on (u0, Ul) associated with (2.8)-(2.9) is defined 

similarly as in Definition 1 through the equations for an assumed smooth solution 

~(t): 

Ok 0k-2 0k-1 0k-2 
(2.10) -~-gu(t) = Ao-~g:su(t ) - a(.l o-~_l u(t ) Otk_2f(u(t))  

(k = 2,3, . . . ) .  

To make the essential feature clear we restrict ourselves to the important cases 

N = 2,3, and assume that f C C4(R) and 

(2.11) lY(u)l ~ kolu[ 3, [/'(u)l < kllul 2 and lJ ~u)l <~ k21ul 

for lul ~< L, where ki, i = 1, 2, 3, are positive constants depending on L, L being 

arbitrarily fixed hereafter. We note that no growth condition on f (u )  as lu[ ~ oo 

is made in our argument. 

We prove the following result. 

THEOREM 2: Let N = 2, 3 and a(-),p satisfy the same hypotheses as in Theorem 

1 with m = 4. We assume that (uo, ul) C Hs • H4 satisfies the compatibility 

condition of the 4th order associated with (2.8)-(2.9) and 

(2.12) 2rap -- 8p > N. 

Then, for any K > 0 there exists e(K) > 0 such that i f  

(2.13) IluoiIH~ + IluxllH, < K and Zo -~ IIVuoll + Ilulll < e(K),  

the problem (2.8)-(2.9) admits a unique solution u(t) 6 X4 and it holds that 

5 

(2.14) Z IID~u(t)llH~-~ <- K < cr 
k=0 
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and 

(2.15) 
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E( t )  < C(K)(1 + t) -Sp/N, 

where D~ denotes the k th  order partial differentiation with respect to t. 

To prove the theorems we need the following lemmas. 

LEMMA 1 (Gagliardo-Nirenberg): Let  1 <_ r < p <__ oc, 1 <_ q < p and m >_ O. 

Then, we have the inequality 

(2.16) Ilvl[w~,, < Cl[vli~v,,, , [Ivll~ -~  for v e w m'q n L ~ 

with some C > 0 and 

0 

provided that  0 < 0 < 1 

LEMMA 2: 

(2.18) 

(0 < 0 < t i f  p = oc and mq = integer) .  

Let  r be a nonnegative function on R + = [0, oc) satisfying 

sup r 1+~ < g( t ){r  - r + T)} 
t<s<_t+T 

with T > O, 7 > 0 and g(t) is a nondecreasing function. Then, O(t) has the decay 

property  

{ (2.19) r <_ r -3 + "r g ( s ) - i d s )  for t > T. 

For a proof of Lemma 2 see Nakao [8, 10]. If "~ -- 0 and g(t) =const in the 

above we have 

r < Cr - ~  

for some X > 0. 
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3. P r o o f  o f  T h e o r e m  1 

We give a proof of Theorem 1 by combining the techniques in [11] and [17]. 

Multiplying the equation by ut and integrating over [t, t + T] x f~, t > 0, T > 0, 

we have 

(3.1) a(x)lutl2dxds = E(t)  - E( t  + T) =- D(t)  2. 
,It 

Next, multiplying the equation by u and integrating we have 

( 3 . 2 )  = - a u , u e x e s  - (u , ( t  + T) ,  u( t  + r)) + (~t(t), ~(t)). 
Jt 

We shall derive the inequality 

Jt E(s)ds  <_ C E(t  + T) + D(t)  2 + ft '+T (14,12 + 1412)dxds . 

The derivation of (3.3) is essentially due to Zuazua [17], and we sketch it briefly. 

Multiplying the equation by (x - x ~ �9 Vu and integrating we have 

Jt (]u'[2 - ]Vu[2)dxds + ]Vu]2dxds 
, I t  

f+'fo (3.4) + a u t ( x  - z ~  �9 V u d x d s  = - ( u , ( t  + r), (x  - x ~  V u ( t  + T ) )  
,It 

1 fO ( x - x  ~ Ou dads. 
+ (ud t ) ,  (z - x~ vu(t)) + ~ f + r  u 04  2 

, I t  f~ 

It follows from (3.2) and (3.4) that 

l l4t(s) l l2ds + + a - I lV4(s) l l=ds  

_., (s.+. io.,..,.....)- ,,. 
+.))+. f'+" f ~ '.~ 

�9 I t  JF(x o) 

with ~ > O, where we have used the Poincare's inequality. 
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Taking N/2 - 1 < a < N/2 and using (3.1) we have 

(3.6) E(s)ds < C(E(t  + T) + D(t)  2 } + C dads. 
J t  - J t  (~o) Ov 

To es t imate  the last t e rm of the r ight-hand side of (3.6) we take a function 

r# ~ C1(~)  such tha t  

(3.7) 0 < r# < 1, ~7 = 1 on &, 17 = 0 on f / /w and IVo12/o c c(~), 

where & is an open set in fl with F(x0) C & C w .  

We mul t ip ly  the equat ion by 17u and integrate  to  get 

Ja r#lVul2 dzds 

(3.8) < C(E(t) + E(t + T)) + C (1~<1: + I~l~)d~ds, 
J t  

where we have used the inequality 

I(u, Vn"  Vu)l  _< C lu l l v~Vul .  

Further ,  we take an open set & in R N with ~ f-I ~ C & and a C 1 vector  field h 

such tha t  h = v on F(x~ h .  v > 0 on O f / a n d  h = 0 on f / /&. Then,  we mul t ip ly  

the equat ion by h �9 Vu  and integrate  to get 

i t + T  OUl2dxds < .'t ~, (~o) I~  - ( h  ~)1 

f + ~ L  
< c (lu, I 2 + IVul2)dxds + C(E(t + T) + E(t)). 

J t  

(3.9) 

(See (3.4).) 
From (3.6), (3.8) and (3.9) we obtain  the es t imate  (3.3). 

Since 

f 
t + T  

TE(t  + T) < E(s)ds 
J t  

we know from (3.3) tha t  if we take T > 2C, 

(3.1oi f {lu, 
We take T > 0 as above in the sequel. 

We proceed to es t imat ions  of the last two te rms  of the r ight-hand side of (3.10). 

To t rea t  the last t e rm  we prepare  the following inequality, which is a variant  of 

the es t imate  (1 .12) in  [17]. (See also (5 .15) in  [1].) 
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PROPOSITION: We take a large T > 0. Then, there exists a constant C > 0 

independent of (uo, ul) such that the estimate 

(3.11) IIu(s)I[2ds <_ C a(x)lutI2dxds + lutl2dxds 

holds for any energy finite solutions of (1.1)-(1.2). 

Proo~ The proof is given quite similarly as in the proof of (1.12) in [17]. We 

sketch it briefly. Suppose that the assertion was false. Then, there would exist a 

sequence {t~} C R and a sequence of solutions {un} such that  

t. t"+r Ilu,~(s)ll2ds = 1, 

and 

~(x)l~. ,I  ~ + I~ , . . l~dxds  ~ o 
J tn J tn 

as n ~ (x). We note that the inequality (3.10) remains valid by homogeneity 

even if we replace u(t) by un(t). Thus, setting v,~(t) = u~(t + t,~) we have 

oo T IIv,~(s)ll2ds = 1, 

(3.12) foT /f2a(x),v,~,(s),2dxdS+ foT ~ ,vnt(t),2dxds---+O 
as n --* cx), and, by (3.1) and (3.10), 

sup {l l , , , . (s) l l  2 + IlVv,.(t)ll ~} = 2E(v , , ( 0 ) )  
O<t<_T 

/o /o = 2 { E ( v , ( T ) )  + a(x)[v,t(s)[2dxds } <_ Cl < oo 

for large n, where C1 is a constant independent of (uo, ui). Therefore, {v,~(t)} 

converges along a subsequence to a function v(t) �9 C([0, T]; H ~ cl C1([0, T]; n 2) 

in appropriate topologies, which is a solution of the problem 

v t t - A v = O  i n g / x [ 0 , T ]  ( in fact in fl x R) and v[ofl=O 

with the additional conditions 

foT ~ a(x),vt,2dxds = O 
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and 
T 

fo IIv(s)ll2ds = l. 

This is a contradiction if we take a large T > 0 (T > d(f~), diameter of fl, is 

sufficient), because the first condition then implies v - 0 for a solution of the 

wave equation above. 

Now, the inequality (3.10) together with Proposition 2 implies 

[utl2dxds . 

Finally, by the assumption on a(x) and Lemma 1 we see (cf. [8]) 

ftt+T f ]ut]2dxds 

• sup tlu,(8)ll~ (p§ 
t<_s<t+l 

<CO(t)  2p/(p+I) sup Ilu,(s)ll2(~-~/2m)/(p§ ('§ 
t < s < t + T  

(3.14) < C,~D(t)2v/(n+I)E(t) (2m-N}/2m(p+l) = A(t) 2 

where Cm = C(lluoll.•+, + IlUllln.) N/'~(p+a). Thus, we have from (3.13) 

(3.15) E(t + T) < C(D(t) 2 + A(t) 2) 

and, returning to the identity (3.1), 

(3.16) E(t) <_ C(D(t) 2 + A(t)2). 

Thus, recalling the definition of A(t) 2 and using Young's inequality we arrive at 

the inequality 

(3.17) E(t) < CO(t) 2 + C(lluollH.§ + IlUllIH,)2N/(2'~v+N)D(t) 4mp/(2mv§ 

or  

(3.18) E(t) I+N/2mp ~ C(lluollH.+~ + ]IUlI]HM)N/mP(E(t) -- E(t + T)). 

Now, applying Lemma 2 to the above inequality (3.18) we obtain the decay 

estimate (2.7). The proof of Theorem 1 is complete. 
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4. P r o o f  of  T h e o r e m  2 

In this section we treat the semilinear equation 

35 

(4 .1 )  

(4.2) 

utt - Au  + a(x)ut  + f (u )  = 0 in  [0, oo)  x Ft, 

U(x,O) = Uo(X), ~t(x,O) = %tl(X ) and u]on = O. 

Let m > N/2 and f 6 Cm(R). Then, it is well known (cf. T. Kato [6]) that 

the problem (4.1)-(4.2) admits a unique local solution u(t) on [0, T) • ~ for some 

in the class 

Xrn(T) = 5 Ck([0' ~'); Hm+l-k f-) H O) N cm+l([o ,  T); L2(n)),  
k=l 

where (u0, ul) should satisfy the compatibility condition of the m th order. 

Thus, for the proof of Theorem 2 it suffices to derive the a priori estimates 

m+l 
y ~  IIDku(t)ll < g < c~ 
k=0 

and 

E(t) = ~(llu~(t)ll 2 + IlVu(t)ll 2) < Cm(1 + T) -2p'~/N 

under the conditions that  

II~011H~+I + IluilIH~ < K 

and Io ~ = IlVuoll  2 + Ilulll 2 is small, where we take in fact N = 2 , 3  a n d  m = 4. 

Setting v(t) =t (u, ut) the linear equation (1.1)-(1.2) is reduced to the system 

v(t) = Av(t) 

where (01) 
A = A - a I  with D(a)  =,H2 n H~ • H~. 

We denote by U(t) the semi-group (in fact, group) generated by A. 

Theorem 1 implies that  

Then, 

(4.3) IIU(t)voll _< ab~"/N (t) - O(Io ~/""  + K-N/m"( t  - T)+) -pm/N 

_< CK(1 + t) -~m/N 
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provided that v0 = (Uo, Ul) satisfies the compatibility condition of the mth order 

associated with (1.1)-(1.2) and I[U011H,,,+I• _~ K. By a standard theory of 

semi-groups the semilinear problem (4.1)-(4.2) is equivalent to 

(4.4) v(t) = U(t)vo + U(t - s)](u(s))ds 

where we set ](u) =t (0, f(u)). 
To derive the desired a priori estimates we assume that 

m-t-1 

(4.5) []u(t)]]~ <_ L, Z HDku(t)H < K and E(t) <_ M g g ~ / N ( t )  
k=O 

for 0 < t < T with some T > 0, where M is a constant to be fixed later. 

To apply (4.3) to the above integral equation we must check that for every 

fixed t > 0, (u0, Ul) = (0, f(u(t))) satisfy the compatibility condition of the 4th 

order associated with the linear equation. Let (fi~} be defined as {u~} in (2.2) 

with (uo, Ul) replaced by (d0,fil). Then, we see 

~2 ----- A~0 -- a (X)~ l  ---- - - a f ( u ( t ) )  E H ~ 

and 

~3 ---~ m ~ l  -- a (x )~2  -~- A ( / ( u , ( t ) ) )  -~ a2 / (z t )  E n 0 

where we have used the facts that 

1 ( o )  = f ' ( o )  = f " ( o )  = o.  

P-~urther, we see 

U4 = A~t2 -- a u 3  = - - A { a f ( u ) }  -- a A ( f ( u ) )  -- a z f ( u )  E H 0 

and 

u5 = A~3 - au4 = A2(f(u)) q- A(a2f(u)) - a~4 E L 2. 

Moreover, by a similar argument we can show that  v0 = (uo, Ul), which originally 

satisfied the compatibility condition of 4th order associated with the sernilinear 

equation, satisfies also the condition associated with the linear equation. Thus, 

we have 

(4 .6 )  I lU(t  - s)](u(s))ll <_ CK(1 + t - s)-'~P/Nll/(u(s))llx,, 
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and 

(4.7) 

with m = 4. 

Here, we can prove 
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IIU(t)voll ~ g~<pm/N (t) 
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(4.10) 

with 

I1 ~ c( L lul'lDmul2)~ 

_< CllVul[ z-.1 [IO"+lul[.1 

<_ C( M, g )g~-'~)~/N ( s) 

N ( m _ ~ l  N N 2  ) 1 N / 8 < l  
r / l - -  m 

(a trivial modification is needed if N = 2). 

Similarly, 

(4.11) 

I2 <_ ClluDiuD~-~ull 

CIIVull 3-'~ [[D~§ "2 

< C(M, K)g(~-'72)mr~/N(s) 

{ J J } 
Sj = ( a , , . . - , ( ~ j ) E  NJl~--~ai = j  and ~ i a i  = m  . 

i=1  i = I  

Here, by Lemma 1, we know 

where 

(4.8) IIf(u(s))llH~ < C(M,K)gK(s) -2mp/N (m = 4) 

under the assumptions (4.5). This estimate is included essentially in [12] and 

[13]. For completeness, however, we sketch it briefly. We see 

f t t (  ~t ) m--1 
(4.9) IIDmf(u)ll <llf'(u)Omull + ~ OiuDm-Xu 

i=1  

4 (/gJu) ~ + ~/(J)(u) ~(D~)~ 
"= a E S j  

=I1 + I2 + / 3  
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with 

Finally, 

(4.12) 

r12 = 1 -  N / m  < 1. 

4 

�9 . .  l i D  ~ , l l , , , ,~ ,  
j=3 ~esi 

4 

< CEH{=II[DuII'~'(1-~ ~176 
j = 3  

<_ C(M, K)gK p'~ y~" ~'(1-~ (s) 

with 

m 

It is easy to see 

and hence 

2 P ia i  i=1 Pi 

E aio ~ = m - j +  N j  N 

i 

(1 < Pi < c~). 

(4.13) I3 <_ C(M, K)g~P(2'~+3-N)/N(s). 

Thus, we conclude (4.8). 

From (4.4), (4.6) and (4.8) we have 

(4.14) 

<_ qlv(t)lt 

/o' <_ g~'m/N(t) + C(K, M) (1 + t - ~)-~/Ng}~m'/N(~)d~ 

= ggpm/N(t) + C(K, M) + 
2 

< g~"/~'(t)  + cI~(1 + t) -~m/N + CIo(1 + t)-2m~/N+lg~"/N(t) 
< (1 + C(g,  M)io)gt~mlN(t) 

provided that 

2rap = 8p > N, 

which is just our assumption on p. 
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Thus,  we observe tha t  if we take M > 1 and choose I0 so small  tha t  

(4.15) 1 + C ( K ,  M)Io  < 

may  hold, then 

(4.16) E(t) < M9~: 2pm/N for 0 < t < cr 

as long as 
m+l  

IIDCu(t)llH..+,_j <_ K 
j=0 

We easily see, by L e m m a  1, 

and Ilu(t)ll~ < L. 

Ilu(t)llo~ _< CIIVu(t)ll~-OIt~'(t)ll~ <_ C I ~ - ~  K ~ 

with 

O = (N  - 2 ) / 2 m  (arb i t ra ry  small  posi t ive number  if N = 2). 

Hence, we have 

provided tha t  

Ilu(t)ll~ < L 

(4.17) CI~-~ ~ < L. 

Finally, on the basis of (4.16), we shall derive the es t imate  

(4.18) 
m+l  

IID{u(t)llH,.+,_, <_ C(INolIH~+, + Ilu~llH,.)+q(K, Io) - Q(K, Io), 
j=0 

as long as 
m + l  

Ilu(t)ll..+,_~ _< K, 
j=0 

where q(K, Io) is a quant i ty  depending on K,  Io in such a way tha t  

lim q(K, Io) = O. 
Io ~ 0  
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Let us begin with 

Era(t) = ~(llDT'+lu(t)ll 2 + IIDf D=u(t)ll=) 

Differentiating the equation m times in t we get 

(4.19) DT'+2u(t) - AD'~u(t) + a(x)n'~+lu(t) = n '~f (u) .  

We already know 

IIn~f(u(t))lt ~_ C(K)g~:2pm/N(t) (m = 4) 

Dm+l u and hence, multiplying (4.19) by t , we have 

d Em(t) S IIDT'f(u(t))ll < C( K)gg2r~/N ( t) v/Era(t), 

which yields 

(4.20) S C(lluoll~.+, + I lul l lk.)+ CK2N/pmIg �9 

Next, we use the equation 

(4.21) - A n ' ~ - l u ( t )  = -D'~+Xu(t) - anyu ( t )  + n ' ~ - l f ( u )  - h(t). 

Using the estimate (4.20) just obtained we see easily (cf. the proof of (4.8)) 

tlh(t)ll <_ [IDT'+~u(t)[I + CllD'~u(t)ll + IlD'~-l f(u)ll 

<_ C(]luol]n.+, + Ilu~lln. II)+ C(K)gTc=~"/N(t) 

<_ C(IluolIH.§ + IlullIH.) + C(K)Z~, 

and, by elliptic theory, 

Isr. J. Math. 

(4.22) IIDF'-x~'(t)IIH= _< C(IluolIH...+, + II~IlIH.) + ql(K, 1o) 

for a certain ql(K, Io) with limlo-o qx(K, Io) = 0. Repeating similar arguments 

inductively we can prove further 

~rl--2 

(4.23) E I I~u( t ) t lH, , ,+, -J <- C(llu'~ -}- IIt1"111H,,, ) + q2(K,/o) 
j=0 
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with  liml0.-.o q2(K, Io) = 0. Thus,  we conclude (3.17). 

The  es t imate  (4.18) means  tha t  if we take g > C([[uO[[H~+l + [[ulI[H,,) and 

choose Io so small  tha t ,  in addi t ion to (4.15) and (4.17), the inequali ty 

Q(K, Io) < K 

may  hold, then the local solution u(t) continues to exist in fact on [0, oo) and 

all the es t imates  obta ined  are valid on [0, oc). The  proof  of Theo rem 2 is now 

complete.  
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